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In this paper, with the help of the method used in [l 1 for solution of 
the electrostatic (hydrodynamic) problem, some boundary value problems 
of the theory of elasticity are solved for the same regions, i.e. for 
the plane (parallel) layer with a spherical cavity. The method used in 
[l ] can be described briefly in the following manner. 

The solution, a, of the boundary value problem is sought in the form 

U = no + u1 (0.V 

where u. is the solution of the same boundary conditions on the planes, 
but without the cavity. It is easily found. 

The additive term ui is sought in the form of a series of spherical 
functions relative to the center of the cavity, and to all its mirror 
images in the boundary planes of the layer. 

The distribution of these points is symmetrical with respect to each 
plane. Because of this symmetry the homogeneous boundary conditions on 
the planes which should be satisfied by u1 are satisfied by some simple 
relations between the coefficients of the series. 

In order to satisfy the boundary conditions on the surface of the 
cavity, the expression ur is reduced to the single variables v, 8, and 
9 referred to the center of the cavity. To obtain this, the transforma- 
tion formulas of the spherical functions for the translation of the 
origin are used [ 2 I. 

From the boundary conditions on the surface of the cavity for the 
coefficients of the series, we obtain an infinite system of algebraic 
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equations of the type 

where 

k-1 I--1 k-1 

The system (0.21 is regular for a large range of the values of the 
ratio of the radius of the cavity, R. to the thickness of the layer, a. 
(thus. in consequence of (0.3) it is completely regular*). The solution 
of this system is found by a reduction method 13 1, and also, at least 
in the region of its regularity. by the method of successive approxima- 

tions. 

In an analogous manner we can obtain solutions of the boundary value 
problems for a layer with an arbitrary namuber of spherical cavities 
whose centers lie on a straight line perpendicular to the faces of the 
layer. l * 

To use the above described method for the solutions of the boundary 
value problems in the theory of elasticity, it would be necessary to 
find first some complete system of solutions of the static equilibrium 
equation of the theory of elasticity 

Au+&graddivu=O 

(II is the displacement vector and u is Poisson’s ratio). which would 
correspond to the system of spherical functions in potential theory, and 
which would be suitable for application of the above method.*** Further- 
more, the transformation formulas for these solutions should also be 
determined. 

* 

** 

Here the terminology of 13 1 is used. 

We note here, that the method of mirror images and use of the trans- 
formation formulas for spherical functions was employed by A.M. Rodov 
for solutions of some electrostatic problems of a half-space with a 
spherical cavity, (oral communication). For determination of the 
coefficients of the series Rodov obtained a system of the form (0.21. 

***We could apply the system of solutions due to Thomson 14 1. However, 
it was verified by the author that the systems obtained for determi- 
nation of the coefficients were very unwieldy. Besides, for the 
Thomson’s solutions great difficulties will be encountered in finding 
the so-called rotation formulas (see the end of Section 21. 
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1. Systea of normal solutions and determination of trans- 
formation formulas for this system. 

(1) The above mentioned complete system of solutions of (O.4), which 

were called normal, was found by the author in I5 1. He utilized the 

method of separation of variables explained in 16 1 . * This system con- 

sists of the following vector-functions (err ee and e 
# 

are unit vectors 

in spherical coordinates ) 

Pin is the conjugate Legendre function determined by the formula 

a2 = 2p--(fi--P)t 

s-i-3 

Pin (5) = 
(1 - .*p 

2’11 

d’+n @” _ * )’ 

Cd+” 

1 I(1 - PI I-)- 3 - PI 

w+ 3) v f (1 + 1) 
, 71 = 

p1 = (P - i) I -(P + 1) 
21-i * 

( i-b 
P = 2(1-u) > f* 92) 

61 - 
22 (i - p) - 2 (1 + p) - 2 

(U-i)Vqiq 

Tbe solutions uln, vln, win are called outer normal solutions, and 
pin, qln and rl,, inner normal solutions. 

(2) We will find now transformation formulas, which will express inner 

normal vectors referred to the coordinate system with the origin at point 

O,, (Fig.l), by the inner normal vectors referred to the coordinate 
system XYZ with the origin at the point 0. (‘Ihe axes of both coordinate 

* It could be also found more esslly by a method of spherical vectors (see 

I7 I>* 
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systems are parallel). 

We note, first of all, that 

div uln = PI, (cos 8) eins / rtS-1, div pzn = PI, (cos 8) e+J (1.3) 

div win = 0, div rrn = 0 U-4) 

div vln = 0, div qln = 0 (1.5) 

It is easy to verify that vln and ql,, are gradients of harmonic func- 
tions. namely 

vln(r, 0, ‘p) = grad 1 lPln (~09 e) etng, ’ 
- - 

1+1 ,b1 1 
(1.6) . r 

qzn (7, 8, ‘p) = grad 
( 
f PI, (CQS 0) ein’Vz) 

(3) We seek in the transformation formulas for the uI,, in the form 

where the sumnation limits are determinate simultaneously with the 
ooefficients olknS o&t yIkn. 

To find a&n we take the divergence of the left-and right-hand sides 
of (1.7). In view of (1.3)‘ (1.4) and (1.5) and considering the trans- 
formation formula for the spherical functions (the method of obtaining 
such a formula is shown in t 2 f , page 136) 

we get 

To find ylkn it is convenient first to find the curl of the left- and 
right-hand side of (1.7), since a lkn is already known. From (1.6) it 
follows that 

curlqln = 0 (1.10) 

Finding by means of well-known formulas any component of the curl of 
the left- or right-hand side of (1.71, the $-component,* say, and using 

* The &components curl uIn, curl pfn, curl rIn! and curl win are 
spherical functions (harmonics). 
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again (1.8), we get 

71kn = 
(- i)‘-=+-l 2. k (I + k)t 

d’+k k + 1 (k + n)! (I - n)! 
(k = n, a+%. - .) (1.11) 

To find plk,, we write the vector relationship (1-i’) in terms of the 
@components. Taking into account the expressions for alkn and y lkn) and 
the transformation formula (1.8), we have 

f- 1) i--n+1 
Zkn x2= 

(I + k - 1)f 
d’+&l (k .+.n)i (l_ n)f (uk--I*z + 2n2Tk-x* ‘) (1.12) 

where 

=kl = 
8 (p - 1) k”F - 2 (p - 1) (P + k’) + (p + 3) (I - WI - k) 

(4ka - 1) (412 -1) 
(1.13) 

=ki = 
4 (p - 5) kV + 8 (1” + kt) + (p+3) Zk (2k - 21 - Zk) 

kl(4k’ - i) (4P - 1) 

(4) The transformation formula for YE,, is irmuediately found from (1.6) 
and (1.8) 

Yin (r109 elO~ T,) = i 
(-1) l-n+1 k (1+ k)! 

d’+k+’ (I + i) (k + n)! (1 - n)! Qln 0”s 6 cp) (r < d) 
k=n 

(1.14) 
(5) We shall seek the transformation formula for win in the form 

analogous to (I.?). Since div w ln = div r ln = div q in = 0 the coefficients 
of pkn are zero and the formula has the following form: 

Prior to finding x lkn and plkn, we notice that 

div curl win = 0, div curl rl, E: 0 

hbreover, from (0.4) we get 

Au = grad div u - curl curl u 

and it follows from (1.5) that 

i.e. 

curl curl Win = 0, 

curl ‘EYln = grad (~1~~ 

curl curl rzn = 0 

curl rl,, = grad &,, 

where 61, and $m are harmonic functions. 

Finding the #-component of the 
of (1.15), we get 

(Ph = i J - PlnPQ 1 _ 
1-f-1 JJ+1 ’ 

curl of the left- and right-hand side 
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and, taking into consideration (1.10) and (1.8) we get 

(- 1) 1 --+-I 

hkn = 
lk (I + W 

&I-~+1 (1 + 1) (k + 1) (k + n)! (k - n)! (k = n, n + 1, . . .) 

(1.16) 

Now, writing (1.15) for the $-component vectors and substituting 

values of Xlkn, we find plkn : 

- 2-n n (1 + k)! 
‘zkn = &-k :m (k + n)! (l- n)! (k = la + I, k + 2, . . .) (1.17) 

(6) thus, the transformation formulas are obtained.* It is easy to 

verify using D'Alembert's criterion and the estimate 

(1.18) 

that the series which appear in the right-hand sides of these formulas 

are uniformly convergent in an arbitrary sphere with radius smaller 

than d. 

‘Ike validity of the found vector relations can be easily verified by 
explicitly writing these vectors in all three Cartesian components.** 

For convenience, the transformation formulas for the normal solutions 

are written in the following form (here, however, the same letters denote 

different coefficients) 

uzn plO, e,,, 9) = i (- lPn 
kzn d’+t’+l aEknpkn tr, 0, 9) + 

+5 
k=n+l 

i 
k=n 

{- I)‘-++1 

df-6” 

* In an analogous manner we could find transformation formulas for 

r > d, but we shall not need them in the sequel. 

** In the right-hand and left-hand sides of the resulting equalities we 

obtain biharmonic functions. The transformation formulas for such 
functions are easily found from (1.18). 
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where 

B Ikn = (1 + k - I)! 
(k -+ n)! (I--n)l (ok--1, I + 2~27’k-l, 2) 

2n k 
rlkn = - 

0 + w (1 + k)! 

I I/k {k + I) tk + ‘$0 - 4! ’ ‘lkn = 1+ 1 (k + n)! (1 --a)! 

(1.20) 

lk (E + k)! 

(i-t_ 1) (k $ 1) (k + n)! (1 - n)! ’ 

and fkl are found from (1.13). 

(1 + k)! 

‘lkn = i/j&Jj (k + n)! (1 -n)! 

Note. We obtained the transformation formulas so to speak for “above- 

down” (Fig.1). The formulas of transformation for ‘below-up”. i.e. 

fornrufas expressing, for instance nln(r, 8. #) nIn(rlO, Oio, 41, etc., 
are easily found from already obtained formulas. Indeed, reversing the 

direction of the z-alis we express using (1.8) Pln(cos $) ci+/,l+l 

by Q,(cos $1, rig%‘” Q (Fig.l), then we take into account that 

+= R - 8, $1 = n - 8,, and 

P,, (- x) = (- 1)C-9J,, (2) (1.21) 

2. Formulation and solution of problems. 

(1) Using a system of noxmal solutions and the transformation formulas 

for these systems, we are now in a position to construct solutions for a 
layer with a spherical cavity and with the following boundary conditions 

on the outer faces A and B (Fig.l).’ 

%x = “ry - - 0, %? /A = - e, a2 /B = c, c = const @*II 

These conditions are equivalent to the uniform compression of a layer 

by a rigid pwu.zh without friction between the punch and the layer, Qn 

the boundary of the cavity we may assign various conditions of the form: 

(i=l Z 3 b. .-b .) I r I tk3- kij (2.2) 

* u 
ZXB uds etc., are components of the stress tensor in corresponding 

coordinate systems. 
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where a.. and b.k. are constants; i, k = 1, 2, 3, thus, the numbers 1, 
'I t.l 

2, 3 correspond to the subscripts F, 8 and q5; in other words, the com- 

ponents of the displacement vector and of the stress tensors are ex- 

pressed in spherical coordinates. The three equalities (2.21, which 

correspond to the three different values of j, are linearly independent. 

Fig. 1. 

It is required of the functions ~j(e, +), (j = 1, 2, 3) that they can 

be expanded into a uniformly convergent YIntO, 4) - series; such that 

their Fourier coefficients should satisfy the following inequalities 

ymr& 1 fk--l, j = Pi < 1 
-a 

(i = I,27 3) 

(These relationships represent sufficient conditions to prove convergence 
of the series representing a solution. They are not, however, with all 

probability, necessary conditions.) 

Using the same scheme as above, problems with different types of 

boundary conditions on A and 8, can be solved, viz. when 

u, = uu = 0, o,, = p = const (2.3) 

lhe solutions of the boundary value problems are sought in the region 

1 (Fig.l). Besides, the following conditions at infinity have to be 

satisfied [8 1 : 

r(u---ug) = O(l), ra (Tu - Tu,) = 0 (1) (2.4) 

where F is the radius vector, measured from an arbitrary point; T is an 

operator of the stresses, such that 
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(nk are directional cosines of the normal at a given point to the sur- 
face; i, k = 1, 2, 3 which corresponds to x1 = n, x2 = y, x3 = z); 
vector u. is the same u0 which was mentioned in the introduction when 
the method applied here was explained, i.e. it is a solution of the 
boundary value problem with the same conditions on the faces of the layer, 
but without the cavity. 

It is easy to verify that for the problems with the boundary condi- 
tions (2.1) the following is true: 

2c 

UOr = a z = 
$ rP1 (cos q, uox = 7.& = 0 

and for the problems with the boundary conditions (2.3), we have 

uoz = - (1 + 4 (1 - 20) pz (E is the modulus of 
ts (1 --o) ’ uox = uoy - -0 

elasticity) 

Solutions of any of the above mentioned boundary value problems are 
constructed in vector form according to the scheme explained in the in- 
troduction. Here, however, spherical functions are replaced by the outer 
normal solutions. 

(2) Let us construct, for example, a solution of the boundary value 
problem: u,. = u@ = U+ = 0, for r = R (this corresponds to a rigid spherical 
inclusion with an infinite friction), and with the boundary conditions 
(2.1) on the faces of the layer. We seek a solution 11 in the form 

u = ug + ur C-44 

where u0 is determinate by the formula (2.5>, and u1 is constructed in 
the form of the series obtained from the axisymmetrical solutions ulo 

and vlo, (Wlo E 0): 

OD e3 

where Al, Alp, Bl and BL are unknown coefficients, r and r+, 0 and Bir 
are the distances and angles respectively, measured as it is shown in 
Fig. 1, (the points O+ Ii = 
the center of the cavity9 0, 

‘Ihe vector u1 has clearly 
tions on the planes A and B 

1, 2; p = 0; 1, 2, . . .I are mirror images of 
in the face-planes of the layer). 

to satisfy the ho~geneous boundary condi- 
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%z = 0, EIfX = a,y = 0 (2.8) 
Using recurrence formulas for the functions Pin and the formulas for 

differentiation of the spherical functions 12 I , we find, after some 
elementary calculations, that (ulO)r and (vlo Jz and the components of 
the stress tensors corresponding to (2.8) contain linear combinations of 

the functions Pr +1 / rl, PI+~ ,/ r1f2, Pr,,/rt+l, PtSz, 1 / rlfl, Pl+z II rJ+3. 

We find, for instants. as a consequence of this, and in view of the 
fact that on the plane A (Fig. l), 

r = r,o* I"2t.t = rI,lL+17 cos8,, = - cose, cosf.& = ---cOSe~,~+, 

and taking into consideration (1.21) that to satisfy conditions (2.8) on 
the planes A and B the following relationships between the coefficients 
of the series are sufficient 

Al, = (- l)Q‘+r) AL, BEw = (- lp+OB1 (2.9) 

To fulfill the boundary conditions on the surface of the cavity, we 
first reduce uI to a single set of independent variables I-, 8 and 4. 

Considering that the center of the cavity is equidistant from the 
upper and lower faces of the layer. * Using transformation formulas f 1.191, 
(see also remark at the end of Section l), and interchanging the order 
of sumnation, we get 

AkR’+* uko o‘, 6) + 2 Bkfik+3Vko (r, e, + 

k=o 

qkotrp al OD 
ak 21~1 [(- 1)’ + (- I)“1 hkO ({-)l+l “I (i+ k - 1) (2.10) 

k=O 1-o 

In case of an arbitrary location of the center of the cavity, ex- 

pressions (2. 101, and consequently the system (2.11). are more cumber- 

some. 
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where Q&p P&) and 61ko are determined by (1.20). 

Now, from the boundary conditions ur = 0 and ue = 0, for r = R, 

(u$= 0 since (U,,)+z (Vi,) 

tions for determination of t 

4 0), we find the following system of rela- 
t e coefficients Al and Bl (here u = R/A) 

B,+~fAiu’+‘?(1+1)=-~~ (2 is even) (2.11.1) 
2-a 

4c 
- 2 Bl [(- I)1 + (-,l)k] 8~&+k+1 q (2 + k + 1) = - -%. ha 

1-o 

(k=1,2,3 ,...; 1=0,1,2 ,...; Sk,=0 fork+m,6,,,,=1) (2.11.2) 

Ak 
‘k 

I’ k fk + 11 
-Bkj&- 4 [(- 1)” + 

k, 

+ (- j)k] %k& ‘+k+l$(l+k+l)-+~ A&-++ 
2=1 

+ (- l)k] /%k, IJ’+~-~ q (1 + k - 1) - -$ BI [(- i)z + 
I==0 

+ (- i)k] hkoq (1 + k + 1) = - (2C / 34 6kz (k=l,2,3 ,..,; Z=0,1,2) 

(2.11.3) 

Subtracting equations (2.11.3) from the equation (2.11.2) divided by 
and introducing new coefficients 

xk = Ax/h -i- Bk 

+Bk 
2k+ 1 

=+A&+ k:kkJ;:J.Bk 
k (k + 9 - 

(2.12) 

and then putting 

xk = Zkr yk = zk+l, k=l,2,3,. , . (2.13) 

we can write the system of equations (2.11) in the form of (0.2). 

(3) Now we shall show that the inequalities (0.3) are true, To do 
this we notice that 
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Dkla < 00 
~~~ @ + ‘1’ k+f 

=kllf” * (2.14) 
b=l I=1 

Indeed, it is true that 

(2.15) 

from which (2.14) follows. 

The fact that Ckl, 

12. ll)), 

(the coefficients for z, in the transformed system 

are different from Dki, does not prevent the satisfaction of 

the first inquality in (0.3). l’he second inequality is verified 

imnediately. 

Thus, the matrix formed by the coefficients Ckl is a uniformly con- 

tinuous operator in Hilbert space I,. Moreover, the free term bk also 

belongs to the same space. 

Gnsequently, for the system (2.11) the Fredholm’s collorary is true. 

However, the corresponding homogeneous system obtained for c = 0, i.e. 

for the zero boundary conditions, (see (2.1) ), cannot have a nontriM 

solution. This follows from the uniqueness theorem for the boundary 

value problems formulated here. 

It follows then, that the system (2.11) has a single bounded solution 

for arbitrary right-hand expressions. 

The proof that the series obtained above are convergent and together 

with u. yield solution of the problem, and the proof that, in particular, 

we can differentiate the series (2.7) term by term, is conducted by 

substituting the coefficients Al and Bi (all other are expressible by 

them) by their majors Al’ and Bi’ , for which 

f:z (4’ / A;-,) < 1, lim(&'/BI_,) < 1 (2.16) 
I-un 

The behavior of the normal solutions is evaluated with the help of 
the inequality (1.18). 

‘Ihe possibility of introducing the coefficients Ai’ and Bl’ is seen 

from the following. 

If in the system (2.11), written in the form (O.Z), CkI are replaced 

by the coefficients Dkl, then, taking into account (2.15) and the bound- 

edness of the solution of the system, we obtain the following estimate 
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From here 

Replacing in (2.12) zk and yk by xk’ and yk’ we obtain Ah’ and Bk 
for which (2.16) is true. In a similar manner, but slightly more cumber- 
some, one finds the coefficients Ak’ and Bk’ if one does not substitute 
in the system (2.11) ckl by Dkl. 

(4) In an analogous manner, using axisymmetrical vectors ulq and vlO, 
the boundary value problems with the following boundary conditions on the 
surface of the cavity are solved: 

(i) urr = urO = u+ = 0 (free surface) 

(ii) ur = 0; Or@ = a+= 0 (rigid spherical inclusion without fric- 
tion), and other axisymmetrical problems. 

The speed of convergence of the series can be judged from the results 
obtained in the problems related to electrostatics, (see [ 1 ] 1. Xn that 
case it was shown that in some special instances the series representing 
the coefficients of the field intensity can be replaced by the first two 
or three terms, The error thus evolved was only about 1 per cent. 

In the case of n spherical cavities with the centers on one straight 
line perpendicular to the face-planes of the layer, the solution ui is 
sought in the form of the series related to the centers of all cavities 
and their mirror images in the planes A and B. 

Consequently, instead of the two series of 
and Bl, u1 will be composed of n such series. 
nation of these new coefficients. one obtains 
as considered above. 

In the case of non-axisymmetrical problems 

unknown coefficients AI 
Moreover, for the determi- 
a system of a similar form 

ui is sought in the form 
not only in terms of uzO and vlq but also in terms of all normal solu- 
tions, (If the spherical cavities of a layer are filled with a substance 
having different elastic characteristic (I and E than the layer, then, 
clearly, the solution inside of the cavities should be sought in the form 
of the series in terms of the inner normal vectors). 

(51 To solve problems with more general conditions on the face planes, 
when the right-hand sides of the expressions (2.1) and (2.3) are functions 
of the points of the plane, it is possible to find Green’s tensors using 
the above method, (see [ 5 I). In addition to the transformation formulas, 
composition theorems for normal solutions, or rotation formulas which 
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express the normal vector Qln(r. 6, (p) in a given coordinate system by 

the normal vectors Ql,,(r, O’, $‘I, are used. The latter vectors are 
related to the coordinate system which is obtained from a given system 

through some rotation specified by Eulerian angles $r (I, $2. These 

formulas have the form: 

and they are obtained using the addition theorem for the generalized 

spherical functions TSn ?o$, a, ~$2) derived in [ 6 1 . 

Note. An attempt could be made to solve these problems using the above 

derived method, (without Green’s tensors). In this case u. could also be 

found (see [ 9 1 ). However, the expansion of uO on the surface of the 

cavity in terms of Yl, presents in itself quite a complicated problem. 

Notice that this method cannot be applied to the problems with 

different boundary conditions than those enumerated above. The problem 

of a semi- infinite layer with an arbitrary number of spherical cavities 

and with arbitrary centers can be solved with the help of rotation and 

translation formulas. Using the same method, the following problems can 

be solved: an infinite body with three spherical cavities (the problem 

of two spherical cavities can be solved using transformation formulas 

only) and the problem of a non-concentric cavity in a sphere. 

In conclusion the author wishes to express his deep gratitude to A.M. 

Rodov for his valuable suggestions in the process of completion of this 

work. 
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