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In this paper, with the help of the method used in [1 ] for solution of
the electrostatic (hydrodynamic) problem, some boundary value problems
of the theory of elasticity are solved for the same regions, i.e., for
the plane (parallel) layer with a spherical cavity. The method used in
[1] can be described briefly in the following manner.

The solution, u, of the boundary value problem is sought in the form
=yt (0.4)

where ugy is the solution of the same boundary conditions on the planes,
but without the cavity, It is easily found.

The additive term uy is sought in the form of a series of sphericsal
functions relative to the center of the cavity, and to all its mirror
images in the boundary planes of the layer.

The distribution of these points is symmetrical with respect to each
plane. Because of this symmetry the homogeneous boundary conditions on
the planes which should be satisfied by u, are satisfied by some simple
relations between the coefficients of the series.

In order to satisfy the boundary conditions on the surface of the
cavity, the expression vy is reduced to the single variables v, &, and
¢ referred to the center of the cavity. To obtain this, the transforma-
tion formulas of the spherical functions for the translation of the
origin are used [2].

From the boundary conditions on the surface of the cavity for the
coefficients of the series, we obtain an infinite system of algebraic
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equations of the type

a0
5t 2 Cud =1by (k=1,28,...) ©2)
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The system (0.2) is regular for a large range of the values of the
ratio of the radius of the cavity, R, to the thickness of the layer, a,
(thus, in consequence of (0.3) it is completely regular®). The solution
of this system is found by a reduction method [3 ], and also, at least
in the region of its regularity, by the method of successive approxima-
tions.

In an analogous manner we can obtain solutions of the boundary value
problems for a layer with an arbitrary namuber of spherical cavities
whose centers lie on a straight line perpendicular to the faces of the
layer.**

To use the above described method for the solutions of the boundary
value problems in the theory of elasticity, it would be necessary to
find first some complete system of solutions of the static equilibrium
equation of the theory of elasticity

1 (3
Au+ 75 graddiva =0 0.4)

(u is the displacement vector and o is Poisson’s ratio), which would
correspond to the system of spherical functions in potential theory, and
which would be sultable for application of the above method.*** Further-
more, the transformation formulas for these solutions should also be
determined.

* Here the terminology of [3 ] is used.

** We note here, that the method of mirror images and use of the trans-
formation formulas for spherical functions was employed by A.M. Rodov
for solutions of some electrostatic problems of a half-space with a
spherical cavity, (oral communication). For determination of the
coefficients of the series Rodov obtained a system of the form (0.2).

*s*ge could apply the system of solutions due to Thomson f41. However,
it was verified by the author that the systems obtained for determi-
nation of the coefficients were very unwieldy. Besides, for the
Thomson’s solutions great difficulties will be encountered in finding
the so-called rotation formulas (see the end of Section 2).
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1. System of normal solutions and determination of trans-
formation formulas for this system.

(1) The above mentioned complete system of solutions of (0.4), which
were called normal, was found by the author in [5]. He utilized the
method of separation of variables explained in [6 ].* This system con-
sists of the following vector-functions (e,, eg and ey are unit vectors
in spherical coordinates)

8 3
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Pln is the conjugate lLegendre function determined by the formula
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The solutions Uy, Vip» ¥, are called outer normal solutions, and
Py, 9y, and Ty, inner normal solutions.

(2) We will find now transformation formulas, which will express inner
normal vectors referred to the coordinate system with the origin at point
010 (Fig.1), by the inner normal vectors referred to the coordinate
system XYZ with the origin at the point 0. (The axes of both coordinate

* It could be also found more easily by a method of spherical vectors (see

{7 1.
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systems are parallel).

We note, first of all, that

divuy, = Py (cosB) eine /ri+1,  divpy, = Py, (cos ) einer! (1.3)
divwy, =0, divry, =0 (1.4)
divv,, =0, divq, =0 (1.9)

It is easy to verify that v;, and qj, are gradients of harmonic func-
tions, namely

'pmmmONM@)

= 1
Vin(r, 8, @) = grad (_ . 71

(1.6)
qin (7', 6, Q) = grad (——11—- P, (COS 6) ei'mprl)

(3) We seek in the transformation formulas for the uy, in the form

Win (T10s O10y )= Eflzknpkn (r, 6, ) 4+ Zszn(Ikn (r, 6, @) + E Yien Tin (7, 6, @)
(1.7)

where the summation limits are determinate simultaneously with the
coefficients Qlpns Blkn' Y lkn®

To find a we take the divergence of the left-and right-hand sides
of (1.7). In view of (1.3), (1.4) and (1.5) and considering the trans-
formation formula for the spherical functions (the method of obtaining
such a formula is shown in [2], page 136)

Ppy(osti) ™ & pl-r g iy
n rloi”’l = = dI+};+1 (k+ n)l (l — B)! Pkﬂ (COS 6) rkel’ﬂv (l' <d) (1.8)
we get

=D agm
“zkn———dj;k.,_—l—@%n%:m (b=n,n4+1,...) (1.9)

To find yp, it is convenient first to find the curl of the left- and
right-hand side of (1.7), since aj, is already known, From (1.6) it
follows that

curlqu, =0 (1.10)

Finding by means of well-known formulas any component of the curl of
the left- or right-hand side of (1.7), the ¢-component,™ say, and using
*  The ¢-components curl up, curl Pin curl T and curl ¥, are
spherical functions (harmonics).



Boundary value problems of static theory of elasticity 455

again (1.8), we get
(=M 2a /T (4R
Ton="—mx & V ¥ T Frara—n) (k=nn+1..)  (1.41)

To find B}, we write the vector relationship (1.7) in terms of the
¢-components. Taking into account the expressions for ajp, and yj;,, and
the transformation formula {1.8), we have

(=" g r—1l

Buen = —— e g = (%1t 2000, 1) (1.12)
where
_ B—N)KP—2(p—1) (P + F) + (p43)( — 21— k)
Gk = @k — 1) 42 —1)
(1.13)
_ 4{e—5) IR 8(12 + k) + (p+3) Ik (2k — 21 — k)
TH = Kl (ke — 1) (GIP—1)

(4) The transformation formula for v;, is immediately found from (1.6)
and (1.8)

e k(4 B!
2 T g DGraa—m 6o r<a
(1.14)
(5) We shall seek the transformation formula for ¥, in the form
analogous to (1.7). Since div w;, = div rj, = div qj, = 0 the coefficients
of pp,, are zero and the formula has the following form:

Vin (100 B10, @) =
k==n

Win (rlm O10» ‘P) = 2 NxnTkn (7‘, 69 ‘?) + Zf"llm Qrn {r, 0, ) (1.15)

Prior to finding Ajp, and gy, we notice that
div curl w;,, =0, div curl v, = 0
Moreover, from (0.4) we get
Au = graddivu — curl curl u
and it follows from (1.5) that

curl curl w;, = 0, curl curly, =0
i.e,
curl Wiy, = grad @, curl Iy, = grad ¢y,

where ¢;, and ¥}, are harmonic functions.

Finding the ¢-component of the curl of the left- and right-hand side
of (1.15), we get

v ing ———
, 1 Pe ; l/l-;—i 1,4
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Pin / 141 st q’in ] In
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and, taking into consideration (1.10) and (1.8) we get
(=i 1/ ik L+ k)
M= e Vo arn ey g Fare—m  G=nette)
(1.16)
Now, writing (1.15) for the ¢-component vectors and substituting
values of A, we find ppp, -

. (=1"a I+ 6
b = Iy TrTn G mta—mr  G=rttks2.) (L17)

(6) Thus, the transformation formulas are obtained.* It is easy to
verify using D'Alembert’s criterion and the estimate

| Prn(cosB) | < (14-13, (1.18)

that the series which appear in the right-hand sides of these formulas

are uniformly convergent in an arbitrary sphere with radius smaller
than d.

The validity of the found vector relations can be easily verified by
explicitly writing these vectors in all three Cartesian components.**

For convenience, the transformation formulas for the normal solutions
are written in the following form (here, however, the same letters denote
different coefficients)

Un ("10: B10, <P) 2} (dH.;;.*.l % 1enPan (T, b, q)) -+

k=n
(__ 1)3—7&-{*1 (__ 1)1—-?;—}-1
+ X Z d[.*_k_.l giknqkn (r 6 (P) + Z dl+k lenr){n (r, 8, (P) (1.19)
=n-{-1 =n
e 4 l—n-1
Vin (P10 b10, @) = }3 '-('37;‘);;1— tkn Gien (7 8, 9)
k=n

* In an snalogous manner we could find transformation formulas for
r > d, but we shall not need them in the sequel.

** In the right-hand and left-hand sides of the resulting equalities we
obtain biharmonic functions. The transformation formulas for such
functions are easily found from (1.18).
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— )i
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and @ ; and 7 are found from (1.13),

Note. We obtained the transformation formulas so to speak for "above-
down" (Fig.1), The formulas of transformation for "below- up" i.e,
formulas expressing, for instance uy (r, 0. &) p;, (r .. 05 ior @ ete.,
are easily found from already obtained formulas. Indeed, reversing the
direction of the :z-axis, we express using (1.8) P, (cos e "¢/rl+1
by P, (cos ) rlok ingd (Pig,1), then we take into account that
Y=nr - ¢& =n -0, and

Pl (—2) = (—=1)!""P, (@) (1.21)

2. Formulation and solution of problenms.

(1) Using a system of normal solutions and the transformation formulas
for these systems, we are now in a position to construct solutions for a
layer with a spherical cavity and with the following boundary conditions
on the outer faces A and B (Fig.1).*

Gyx == Gpy = 0, uyls = —ec, u;lp =c, ¢ = const 2.1)
These conditions are equivalent to the uniform compression of a layer

by a rigid punch without friction between the punch and the layer. On
the boundary of the cavity we may assign various conditions of the form:

3 3 3
2 asui+ ) D bagou=10,9) (=123, bige;=byi;) (2.2)

i=1 i=31 k=1

b G, T etc., are components of the stress tensor in corresponding
coordinate systems.
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where a;; and bzk are constants; i, k= 1, 2, 3, thus, the numbers 1,

2, 3 correspond to the subscripts r, 6 and ¢; in other words, the com-
ponents of the displacement vector and of the stress tensors are ex-
pressed in spherical coordinates. The three equalities (2.2), which
correspond to the three different values of j, are linearly independent.

by

Fig. 1.

It is required of the functions f;(6, ¢), (j= 1, 2, 3) that they can
be expanded into a uniformly convergent Y; (6, ¢) - series; such that
their Fourier coefficients should satisfy the following inequalities

lfm Trilfe=1, i =p; < 1 (i=1,23)

(These relationships represent sufficient conditions to prove convergence
of the series representing a solution. They are not, however, with all
probability, necessary conditions. )

Using the same scheme as above, problems with different types of
boundary conditions on A and B, can be solved, viz. when

Uy =1uy; =0, G, = p = const (2.3)

The solutions of the boundary value problems are sought in the region
1 (Fig.1). Besides, the following conditions at infinity have to be
satisfied [8]:

r(u—uy) = 0(1), rE(Tu—Tuy)) =0(1) (2.4)

where r is the radius vector, measured from an arbitrary point; T is an
operator of the stresses, such that
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(Ta); = oighe

(np, are directional cosines of the normal at a given point to the sur-
face; i, k=1, 2, 3 which corresponds to X =%, %, =Y, Xy = z);

vector W, is the same u; which was mentioned in the introduction when

the method applied here was explained, i.e. it is a solution of the
boundary value problem with the same conditions on the faces of the layer,
but without the cavity.

It is easy to verify that for the problems with the boundary condi-
tions (2.1) the following is true:

Ugr = —giz = -—-—rpl (COS 6), Wox = uoy = 0 (2'5)

and for the problems with the boundary conditions (2.3), we have

(14+0)(1—20) (E is the modulus of

Ugy = —~— . 2 Uge = Uy, = 0
0z E(I—e) P& 0x = oy elasticity)

Solutions of any of the above mentioned boundary value problems are
constructed in vector form according to the scheme explained in the in-
troduction. Here, however, spherical functions are replaced by the outer
normal solutionms.

(2) Let us construct, for example, a solution of the boundary value
problem: u,_ = ug = u; = 0, for r = R (this corresponds to a rigid spherical
inclusion with an infinite friction), and with the boundary conditions
(2.1) on the faces of the layer. We seek a solution u in the form

u ==y 4 uy (2.6)

where u; is determinate by the formula (2.5), and u  is constructed in
the form of the series obtained from the axisymmetrical solutions uj,
and vy, (wyo = 0):

? AR uy(r, 0) + }_, BiR™ vy (r, 0) +

=0

2 « oo 2 o o
+ 2 2 Y AR wo (ris 6) + 2 2 X B R vy (ri, 01 (2.7)

i=] p=0I=1 i=]1 =0 Il=0

where A, Al » By and Bl are unknown coefficients, r and Mo 9 and 6
are the dlstances and angles respectively, measured as it is shown in
Fig. 1, (the points 0;, (i =1, 2; p=0, 1, 2, ...) are mirror images of
the center of the cavity, 0, in the face-planes of the layer).

The vector u, has clearly to satisfy the homogeneous boundary condi-
tions on the planes 4 and B
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=0, opp=0y=0 (28)

Using recurrence formulas for the functions Pj, and the formulas for
differentiation of the spherical functions [2], we find, after some
elementary calculations, that (“lo)z and (vlo) and the components of
the stress tensors corresponding to (2.8) contain linear combinations of

the functions p, ., /7, Py /ri+e, Pyyridl, Pry[ri+t, Pr, o/ ris,

We find, for instance, as a consequence of this, and in view of the
fact that on the plane A (Fig.1),

r= Ty Fow =71 ut1s c0S By == — €088, €08 8y, = — cos by 4y

and taking into consideration (1.21) that to satisfy conditions (2.8) on
the planes 4 and B the following relationships between the coefficients
of the series are sufficient

Ay = (— 1)wtn 4, By, = (— 1){e+DB, (2.9)

To fulfill the boundary conditions on the surface of the cavity, we
first reduce u, to a single set of independent variables r, 6 and ¢.

Considering that the center of the cavity is equidistant from the
upper and lower faces of the layer.* Using transformation formulas (1.19),
(see also remark at the end of Section 1), and interchanging the order
of summation, we get

u(r, 6) = 2 AR g (r, 6) + 2 ByR* vy (r, 6) +

k=g

+2"k9i’ )2,4,[(_1)1+(—~1)"1«m( e T R R
2“"0(’ 9 2/1,[(—1)‘—}—(-1)“ w( k=1 —

2 Qko (" ) ZB { i 1)1 (___ 1)#] alko (.g-)H.l n (l + k— 1) (2.10)
= © gty

(
1P = 21

* In case of an arbitrary location of the center of the cavity, ex-
pressions (2.10), and consequently the system {(2.11), are more cumber-
some,
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where @7, By, and 83, are determined by (1.20).

Now, from the boundary conditions u, = 0 and ug = 0, for r = R,
(ud = 0 since (ulo)¢s (vip)p= 0), we find the following system of rela-
tions for determination of the coefficients A; and B; (here u =R/A)

[¢]

Bo+ QL Autiq(l4+1)=—- (1 is even) (2.11.1)
=3

Ar + B+ ax Q) Ai[(— 1) + (— DFapquit i (I 4 & + 1) —
=1

— 2 A =D+ (=D BT Il + b —1) —
=1

— N Bil(— 1V 4 (=) Tt (1) = — 5 B
=0
(k=1,2,3,..; 1=0,14,2,...; 8, =0 for ktm, 8, =1) (2.11.2)
8 1 Yr <
S S — — A {— 1)
2T e = T El =1+
F (= DM e g (4 1) — o ) A T(— 1) +
=1
+ (— 1o w10 (0 k— 1) — 53 Bil(— 1)} +
I=0
+ (= D)8y U+ 5+ 1) = —(2c/3a) 8 (k=1,2,3,...; 1=0,1,2)

(2.11.3)

Subtracting equations (2.11.3) from the equation (2.11.2) divided by
k, and introducing new coefficients

Ty = AuBr -+ By
Bx 3y 2k4+1 _ p—1 2k 4+ 1
"”‘“A"(T‘m—ﬁ)”"k(wn= oAt aary B @42)

and then putting
Tk == 2k Yk = 241y k=1,23,... (213)
we can write the system of equations (2.11) in the form of (0.2).

(3) Now we shall show that the inequalities (0.3) are true. To do
this we notice that
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2 2 Dy? < oo (Dm == (k:;l?l s D é‘-\) (2.14)

k=1 =1

Indeed, it is true that

had L ki “
3 Du= 43 o =( )" (2.15)

& 1—u
P==) l= Ou

from which (2.14) follows.

The fact that Cpj, (the coefficients for z, in the transformed system
(2.11)), are different from Dj;, does not prevent the satisfaction of
the first inquality in (0.3). The second inequality is verified
immediately.

Thus, the matrix formed by the coefficients ) is a uniformly con-
tinuous operator in Hilbert space Zz' Moreover, the free term bp also
belongs to the same space.

Consequently, for the system (2.11) the Fredholm’s collorary is true.
However, the corresponding homogeneous system obtained for ¢ = 0, i.e.
for the zero boundary conditions, (see (2.1) ), cannot have a nontrival
solution. This follows from the uniqueness theorem for the boundary
value problems formulated here.

It follows then, that the system (2.11) has a single bounded solution
for arbitrary right-hand expressions.

The proof that the series obtained above are convergent and together
with u; yield solution of the problem, and the proof that, in particular,
we can differentiate the series (2.7) term by term, is conducted by
substituting the coefficients A; and B; (all other are expressible by
them) by their majors A;” and B;”, for which

%im (A ] Ay <1, llim(B,’ /Bi) <1 (2.16)

The behavior of the normal solutions is evaluated with the help of
the inequality (1.18).

The possibility of introducing the coefficients A;” and B;” is seen
from the following.

If in the system (2.11), written in the form (0.2), Cp; are replaced
by the coefficients Dyj, then, taking into account (2.15) and the bound-
edness of the solution of the system, we obtain the following estimate
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!zki <2k’ = Zmax (T}‘_-;')k + ‘bk‘

From here

}‘im (x;,'/x';,-l) = ilm (yk'/yiz-—l) < 1 (2'17)

Replacing in (2.12) x and y}, by 2" and y,” we obtain A;,” and B}
for which (2.16) is true. In a similar manner, but slightly more cumber-
some, one finds the coefficients A}” and B,” if one does not substitute
in the system (2.11) Cp; by Dy;.

(4) In an analogous manner, using axisymmetrical vectors u, and Yo
the boundary value problems with the following boundary conditions on the
surface of the cavity are solved:

(i) 0., =0, 9= an¢ = 0 (free surface)

(ii) u, = 0, o g=0,4=0 (rigid spherical inclusion without fric-

tion), and other axisymmetrical problems.

The speed of convergence of the series can be judged from the results
obtained in the problems related to electrostatics, (see [ 1 1). In that
case it was shown that in some special instances the series representing
the coefficients of the field intensity can be replaced by the first two
or three terms. The error thus evolved was only about 1 per cent.

In the case of n spherical cavities with the centers on one straight
line perpendicular to the face-planes of the layer, the solution u, is
sought in the form of the series related to the centers of all cavities
and their mirror images in the planes 4 and B.

Consequently, instead of the two series of unknown coefficients Al
and Bl' uy will be composed of n such series. Moreover, for the determi-
nation of these new coefficients, one obtains a system of a similar form
as considered above.

In the case of non-axisymmetrical problems u, is sought in the form
not only in terms of u;, and vy, but also in terms of all normal solu-
tions. (If the spherical cavities of a layer are filled with a substance
having different elastic characteristic o and E than the layer, then,
clearly, the solution inside of the cavities should be sought in the form
of the series in terms of the inner normal vectors).

(5) To solve problems with more general conditions on the face planes,
when the right-hand sides of the expressions (2.1) and (2.3) are functions
of the points of the plane, it is possible to find Green's tensors using
the above method, (see [5 ]). In addition to the transformation formulas,
composition theorems for normal solutions, or rotation formulas which
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express the normal vector Q; (r, €, ¢ in a given coordinate system by
the normal vectors Q. (r, 0", ¢"), are used. The latter vectors are
related to the coordinate system which is obtained from a given system
through some rotation specified by Eulerian angles ¢,, a, ¢,. These
formulas have the form:

Q. (0, 9) = 2 Q, (', 6", ')l/ (’+I’1‘))"((III:))" T (n—oa,m—p)  (2.18)
8 meamef

and they are obtained using the addition theorem for the generalized
spherical functions ?}nl<¢ﬁ, a, ¢,) derived in [6].

Note. An attempt could be made to solve these problems using the above
derived method, (without Green’s tensors). In this case u, could also be
found (see [ 9 ]). However, the expansion of u, on the surface of the
cavity in terms of Yln presents in itself quite a complicated problem,

Notice that this method cannot be applied to the problems with
different boundary conditions than those enumerated above. The problem
of a semi-infinite layer with an arbitrary number of spherical cavities
and with arbitrary centers can be solved with the help of rotation and
translation formulas, Using the same method, the following problems can
be solved: an infinite body with three spherical cavities (the problem
of two spherical cavities can be solved using transformation formulas
only) and the problem of a non-concentric cavity in a sphere.

In conclusion the author wishes to express his deep gratitude to A.M.
Rodov for his valuable suggestions in the process of completion of this
work.
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